York Festival of Ideas 2: Poetry, Science and Imagination

The second event in the series under the ‘Festival Focus’ title ‘Science, Imagination and the Big Questions’ brought together a panel of poets, scientists and musicians to explore the deep connections between the poetic imagination and the scientific imagination.

One of the questions treated in this fascinating discussion, which I was so very privileged to chair, was ‘How can science, poetry and imagination combine to enrich each community’s ideas?’ The expert speakers include poet-priest Malcolm Guite; violinist and composer Anna Phoebe; poet, historian and broadcaster Katrina Porteous; and internationally-recognised expert in interdisciplinary studies, Sam Illingworth of Edinburgh Napier University, who has recently founded Consilience, a new, on-line journal of science and poetry, and of science-poetry.

The panel at the Science and Poetry Event

The discussion was profoundly moving, if only because it represented an act of massive disciplinary reconciliation between the sciences and the humanities, and at the most profoundly incisive and surgical act of language – poetry itself.

The combination of intense imagination and intense observation became a common theme, as the discussion threaded though field theory (Porteous), Shakespeare and Coleridge (Guite), the tension of perfection and imperfection (Illingworth), the roles of science and art in changing perceptions along with emotions (Phoebe), launched a rich discussion of the entanglements between science, poetry and the imagination. Malcolm Guite launched the connections through Shakespeare’s Theseus in A Misummer Night’s Dream:

The poet’s eye, in fine frenzy rolling, 
Doth glance from heaven to earth, from earth to heaven; 
And as imagination bodies forth 
The forms of things unknown, the poet’s pen 1845
Turns them to shapes and gives to airy nothing 
A local habitation and a name

Anna Phoebe’s space poetry made Malcolm Guite think about the connection between the universe ‘out there’ and the imagination, ethics and reflection ‘in here’ that breaks the sad educational separation between art and science, through a memory of a personal and aesthetic reflection on the colour change of a litmus paper, and the embedded observer. We are, at last, learning that science can no longer pretend to exist through the passive voice – all science depends on the observer, her choices, constructions, imagination and emotions.

Sam Illingworth riffed off my introduction of Goethe, who swam against the divisive tide of the early modern choices around how we conceive of an artless science and a science-free world of art. Goethe recognised that science and poetry had a common origin, and would ‘meet again one day as friends.’

Thanks to the questions from the on-line audience, the discussion moved into intensely important and practical questions of technology, consciousness and the future.

This deeply moving and personal discussion did not take place in isolation: there is a global conversation between science and poetry that is now revived, and developing in very interesting directions. The Madelaine L’Engle seminars are also developing this narrative, for example. There is already a follow-on from this event bringing Coleridge and MacDonald together at the nexus of science and poetry, and developing ideas in the education of early-career scientists in taking care of the development of their imaginations, as well as their scientific techniques.

Here is just one upcoming event.

There is a very exciting future to the discussion of science and poetry!


Faith & Wisdom@York Festival of Ideas:1 Aliens

This year’s York Festival of Ideas was, for the second year running but this time planned, all online, but as many festivals have discovered, leapt from regional to global reach as a result, without losing its great White Rose centre of gravity in York and Yorkshire. A partnership between the University of York and the City since 2011, the Festival combines all other festivals based on thinking, literature, music, arts, science, politics into one – two weeks of extraordinary energy and inspiration.

As, before, Faith and Wisdom in Science author organised a Festival Focus theme loosely connected to, and indeed funded by, the interests of the John Templeton Foundation. This year’s Focus was entitled Science, Imagination and the Big Questions, and comprised four events also connected with the ECLAS project, which supports and resources churches, their leaders and communities, to engage creatively and positively with science. The third event, to be reported on in a later post, explored one of the themes of research within the ECLAS project itself

Artist’s impression of Oumuamua (Wikipedia)

But the first event took the ‘Big Questions’ right out of this world. Hosting Professor Avi Loeb of Harvard University and Dr. Amanda Rees of our own University of York, we discussed together Avi’s recent hypothesis that the asteroid Oumuamua was an ancient, alien, spaceship. As you might imagine, this idea has attracted equal measures of intrigue and opprobrium. But Avi has a tough skin, and has enjoyed talking about the book he published this year on the idea, Extraterrestrial.

Avi Loeb, Amanda Rees and I pondering extraterrestrials

You can find the recording of Avi’s talk, the response by Amanda, and the ensuing discussion of questions raised by the online audience, on the Festival YouTube channel here. It was a fascinating hour, with a beautiful balance created by Avi’s injection of the extraordinary new phenomenon represented by Oumuamua, a long cigar-shaped asteroid on a hyperbolic trajectory through the solar-system that will ever only have one visit, and Mandy’s gift of historical context, reminding us that the idea of aliens, and of being visited by them, and contacting and visiting them, is by no means a new one. Even Avi’s call for a disciplinary of ‘astro-archaeology’ turns out to have precedence. It turns out that I actually know an astroarchaeologist.

One question that we did not thrash through very much was that about the theological consequences of alien life, and especially of intelligent alien life. What happens to the apparently special relationship of Homo sapiens on planet Earth, made ‘in the image of God’ according to the Bible, if the universe is replete with other equally self-aware species? How does the incarnation work if beings on other planets also need saving? These turns out, like the idea of alien life itself, to be by no means the novel issues that they are often presented as being. The history of other worlds and other inhabiting beings goes at least as far back as a medieval debate in which Christians actually opposed Aristotle’s Ancient Greek doctrine that God could only have created one world (expounded in his On the Heavens), as Everly narrow-minded and constricting of thought (as well as of God).

The essential balance of special love and relationship of humans, and the need to contemplate a much greater creation and an anthropological de-centering emerges from a complete reading of the Bible, especially (of course!) the Book of Job (chapter 41) where the great alien monster Leviathan is presented by God to Job has his favourite creature of all! This de-centering of humans and its consequence, is also discussed more fully in the book Faith and Wisdom in Science.

For those who would like to read further on the theology of alien life could do worse that read the excellent book by my ECLAS colleague Revd. Prof. David Wilkinson Science, Religion, and the Search for Extraterrestrial Intelligence. Covering the two issues above and many more, in detail and in historical overview, it is a great accompaniment to the discussion with Mandy and Avi, and to Avi’s book. And it might just prepare us for first contact….

Boyle Lecture Discussion Questions: A Full Initial Response

The short online panel discussion following the 2021 Boyle Lecture, The Rediscovery of Contemplation Through Science, was very rich, but attracted far more questions than we could handle at the time. I did (rashly?) promise at the time that I, and panel members if they wished, would try to address, at least in an initial form, all of the questions asked. Here is the result. I have decided that to minimise a fragmentation of response, that it is best to group the questions under subheadings. These turned out to be: Overall Rationale and Purpose, Contemplative Methodologies in Scientific Insight and Broader Practice, Science Culture and Politics, Psychological and Meditative Consequences, Natural Theology of Old and New Kinds, New Atheism, Education, Christian Practice, Lessons from the History of Science and Technology. These sections start with bold italic subtitles. The questions are in italic (followed by the questioner’s name). The response to each collection of questions follows in normal text. They are mine, except were specifically indicated.

Screenshot from the Boyle Lecture discussion with (from left top to right bottom) Prof. Fraser Watts, Prof. Michael Reiss, Prof. Tom McLeish (Boyle lecturer), Prof. Sarah Coakley, Dr. Sarah Lane Ritchie, Lord Williams of Oystermouth (Rt. Revd. Prof. Rowan Williams) (Boyle respondant)

Overall Rationale and Purpose 

Why are we doing this? (Bonnie Zahl – from a young family member)

Is the word God a verb or a noun? (Martin Bassants)

Talk of “religion” and “science” (and any type of “relationship” or whatever) seems utterly unable to capture what you are saying. What categories, and modes of thinking, including contemplation, poetry, rhetoric, understanding could you recommend to us, especially to theologians and scientists (but to all of us really) to move towards a better understanding of God as creator and ourselves as part of creation. (Esgrid Sikahall)

Why do theologians refer to God as he? (Jack Martin)

What is truth? (Rebecca Nichol)

It is inspiring to receive such perceptive and deep ‘framing’ questions stimulated by a discussion such as this one. They are salutary reminders that we tread on transcendent ground. Especially helpful is the bold and simple challenge from the young audience member. Keeping sight of the reason we are doing something is an important habit in science, theology, and everything really! 

We are doing this because it matters to being human, somehow, that we understand how our world works. This isn’t just curiosity, although it might start there, but goes deeper to a sense of responsibility we have to each other and to our world to treasure it. Another reason that I wanted to give this talk is to show directly, rather than argue in the abstract, that Christian faith is in fact a fruitful source of support for science in many ways (and this is exactly why Robert Boyle started the series of lectures all those years ago). There is a misunderstanding that it has, and does still, limit and frustrate science, and I wanted to show that this need not be the case at all. Rather, that science can be both God’s gift and calling, though as soon as you say that you need to do some work to find out what that means. Perhaps that is part of finding out what ‘truth’ means – after all ‘true’ is a woodworking term, indicating when pieces are lined up or properly parallel. ‘True’ has the sense of being in a right relationship with, and both theology and science working together aim to establish that sort of a ‘true-ness’ between us and the world, and therefore between those and Godself (the gender-neutral term that theologians now often use of God, by the way, Jack Martin). But to do that will require, as Esgrid already hints at, every mode of being human in expression and reception. 

Martin Bassant’s question turns us back to Coleridge’s (and for that matter, Moses’) experience of the divine, and of insight into the divine, at that radical moment in the Torah when God declares his substantiveness to be verbal: I AM. 

Contemplative Methodologies in Scientific Insight and Broader Practice

What kind of interaction do you suppose Dr. McLeish’s beautiful insistence on the importance of “imagination” and “suddenness” of scientific solutions through sometimes unconventional modes of contemplation and reflection might have with Bernard Lonergan’s understanding of “insight”?  (Alexander Fogassy )

Within the theoretical areas of the sciences such as physics, chemistry, biology, etc., we have the process of the thought experiment.  How do you see the contemplative and the imaginative and the poetic inspiring this process? (James Fowler)

How would you recommend the jobbing scientist under pressure of funding and publication, make room for the contemplative element of their vocation? (Roger Bretherton)

How can theological reflection seeking an understanding of the mind of God, through Biblical Poetry and Wisdom Literature inspire one’s contemplative activity in the sciences? (James Fowler)

I was struck with contemplation as a way to think about the unseen side and the hidden nature of things as being obvious in art- Cubism aimed to reveal all the unseen sides of an object at once, via the imagination- and the network of fungi that biologists found empirically verified as the probable source of trees being able not to talk to each other but to make protective chemical signals. But in practice we might need to show that this is how many solutions are revealed even to the non-scientist, and on perhaps Buddhism is getting close to doing this. Is the western faith lagging in this and will people of no faith tolerate this approach in education? (Mary lin Raisch)

An example of contemplation from an unexpected source, T.H. Huxley: ‘The student of Nature wonders the more and is astonished the less, the more conversant he becomes with her operations; but of all the perennial miracles she offers to his inspection, perhaps the most worthy of admiration is the development of a plant or of an animal from its embryo. Examine the recently laid egg of some common animal, such as a salamander or newt. It is a minute spheroid in which the best microscope will reveal nothing but a structureless sac, enclosing a glairy fluid, holding granules in suspension. But strange possibilities lie dormant in that semi-fluid globule. Let a moderate supply of warmth reach its watery cradle, and the plastic matter undergoes changes so rapid, yet so steady and purpose-like in their succession, that one can only compare them to those operated by a skilled modeller upon a formless lump of clay. As with an invisible trowel, the mass is divided and subdivided into smaller and smaller portions, until it is reduced to an aggregation of granules not too large to build withal the finest fabrics of the nascent organism. And, then, it is as if a delicate finger traced out the line to be occupied by the spinal column, and moulded the contour of the body; pinching up the head at one end, the tail at the other, and fashioning flank and limb into due salamandrine proportions, in so artistic a way, that, after watching the process hour by hour, one is almost involuntarily possessed by the notion, that some more subtle aid to vision than an achromatic, would show the hidden artist, with his plan before him, striving with skilful manipulation to perfect his work.’ (Joshua Luke Roberts)

What about the wonder of science as a way of encouraging wider participation/enthusiasm? (Timothy Jarrold)

In your view of science as contemplation, what I have heard so far, are explicit appeals to the theology of Christianity. But since science is now a truly global practice, how would we incorporate in science as contemplation the views of other traditions (mindfulness etc. for example)? (Deepanwita Dasgupta)

Contemplation, in the mystical sense, means union with the transcendent or even a rapture. can we talk about a rapture in the case of contemplation through science? I’m asking because rational science often seems to dominate the man. Thanks, (Paul Scarlat)

I think Astronomy is the way to go does the panel agree? (Jack Martin)

‘Contemplative science’: there is a story of nuclear physicists praying the Jesus Prayer as they pursued their research… (Elizabeth Theokritoff)

Could you say something about the use of language in the two magisteria, science and religion.  Science will interpret a ‘mystery’ as an as-yet-unexplained phenomenon, whilst religion seems to protect mystery as a mystery, and would not want it explained, almost putting it off limits. (Paul Devonshire)

This set of questions pushes towards a deeper understanding of what ‘contemplation’ might mean in science, and from where we might learn, or re-learn it. There are some very helpful and promising suggestions. Joshua Luke Roberts provides a lovely example from Huxley – writing like that witnesses to just the contemplative time, reflection, and long unrushed search for the right language to talk about science, that I have in mind as the beginning of the process. Note carefully the ‘watching the process hour by hour’ – how much time to scientists, or all of us for that matter, set aside for watching slow processes in the natural world and reflecting on them. Boyle would most certainly approve. 

But there is more. Here Mary lin Raisch is helpful in pointing out an analogy with cubist art – the practice of holding different perspectives on an object at one and the same time. Huxley is doing this in real time, by describing the visible aspects of the salamander egg in its early development, but also creating and holding a mental image of the latent, potential animal as well as the unknown present structures that must be present and hidden, that ‘code’ for the later forms. Robert Grosseteste, the great 13thcentury polymath to whom Rowan Williams referred in the discussion, put this aspect of contemplation in natural philosophy this way (he calls it ‘sollertia’:

Sollertia, then, is a penetrative power by which the vision of the mind does not rest on the surface of the thing seen, but penetrates it until it reaches a thing naturally linked to itself. In the same way as corporal vision, falling on a coloured object, does not rest there, but penetrates into the internal connectivity and integrity of the coloured object, from which connectivity its colour emerges, and again penetrates this connectivity until it reaches the elementary qualities from which the connectivity proceeds.

There is yet a third stage to this ‘contemplative methodology’ – if I might demean it so – that I am urging be recognized as more central and vital to science than it currently is. It is here that we come to the ‘insight’ that I think (who can be quite sure with Bernard Lonergan?) lies behind the Jesuit philosopher/theologian’s work Insight: A Study of Human Understanding. When we spend a long time absorbing, paying attention to, a chosen focus of the world, perhaps though the perspective of a question, then accompany that with other material from the ‘periphery’ of our attention (this we discussed briefly on the panel session), when all that is added to the mental imaginative re-creation of the unseen, hidden, structures that lie behind the perceived – then we might receive a token of ‘insight’. But although these glimpses into what really might make sense of the world are, according to Lonergan ‘two a penny’, the really worthwhile ones are not.

At this point the experience of the wilderness must come in. All of us must know the experience of trying everything we have talked about so far – the intense study, the attempt to find words, the adding off other ideas, the exercise of imagination – yet stillthe answer, the solution, the clarity of the way ahead, fails to materialize. We give up. We rest for a while, perhaps a long while. But our subconscious does not. When we are fortunate, a moment or rest the next day, week, year or even decade (all are recorded) allows the apparently effortless appearance of insight into our conscious mind. Those are the little or not-so-little experiences that I was trying to urge scientists to share more publicly. There are examples everywhere (certainly in astronomy, Jack Martin, yes – but everywhere else too). Part of the reason that this takes time, I conjecture, is that scientific practice on its own is not enough to generate the radically imaginative new ideas that intuit new scientific insight. Some of the material for these must come from elsewhere, including poetry, religious practice (from many traditions very possibly), music, exercise…. I researched and wrote about the commonalities in these experiences across the sciences and the arts and the humnaities for the book The Poetry and Music of Science,[1] and was astonished by the frequency I heard the same story of winning insight across all these disciplines.

The final experience of this insight feels like a gift at the time. That, in addition to the contemplative course through both focused attention and wilderness times, creates together a very strong analogy with religious contemplation. We might understand the reason for the story that Elizabeth Theokritoff gives us, or for the notion from Michael Faraday that Sunday was the ideal day for scientific experiments – the sabbath rest of our relationship with the world, perhaps?

Science Culture and Politics

How does a democratisation and ‘poetising’ of science deal with the prevalent post-truth culture in which ‘truth is what I choose to believe’? (Andrew Jackson)

Science and religion/culture are each a birthright and common grounds or lingua franca among individuals. Esau either did not understand or value his birthright /lingua franca. While the Jacobs among us are happy to pick up the ball and run with it, what are we to do about our brothers and sisters who do not value what we value? Need we run away, go into exile, only later to appease and reconcile? (Dan Collinson)

On the subject of ‘layman’s science’, do you find encouragement in the growth of ‘citizen science’ projects? (Jennifer Brown)

I think I also agree with Prof. Ritchie’s point. In a world of science as contemplation, how would you draw the boundaries between science and pseudo-science? (Deepanwita Dasgupta)

Might some of the wider engagement in the science enterprise be stimulated by an appreciation of uncertainty? Science involves recognition and appraisal of uncertainty, as a dynamic process. (Andrew Briggs)

My MP chairs the All Parliamentary Group of Christian MPs. At a hustings event he confirmed his disbelief in human-caused climate change. He has previously disregarded opportunities to discuss his reservations with a local Professor with relevant expertise. How helpful is this with regard to public understanding of science? (Alan Ramagek)

These are deeply relevant and practical questions on hard-nosed consequences of the right (or the wrong) public framing of science. I could not be more ashamed, saddened and frustrated to hear from Alan Ramagek of a Christian MP in a position of influence announcing against the weight of scientific evidence on climate change, and especially an unwillingness to enter into dialogue with someone with expertise there. But taking up an opposed, moral high ground and casting anathemas is also not the way forward. We might recall the panel discussion with Dr. Richie, who helpfully pointed out the cherry-picked bits of science by which pseudo-science (like climate change denial) proceeds. The uncertainty to which Andrew Briggs draws our attention is important to discuss, and paradoxically perhaps, it is through an offered and open discussion of that uncertainty that the skeptics might be attracted into a centre ground where there is something to play for. 

The problem when science is not shared by the experts is that truth becomes, as Andrew Jackson reminds us, ‘what I choose to believe.’ A more honestly shared process by which we come to know things, including the concomitant uncertainties, will, I believe, lead to less pseudo-science and anti-science, not more. Of course, I am not sure about that. But surely it is worth a try?

Psychological and Meditative Consequences

It seems to me that contemplation is often viewed as similar to other states, such as mindfulness and reflection. Does the panel have any thoughts on the difference/similarity between contemplation, mindfulness and reflection? (Roger Bretherton)

The practice of lectio divina is very well known in dealing with the Holy Scripture. Is it possible to develop something analogical in dealing with the Book of Nature? (Frank Velic)

The original Sanskrit word for ‘mindfulness’ is Samyak Smriti — literally ‘complete memory’. Deepanwita Dasgupta

These insights might add some depth to the ‘hidden’ or sub-conscious stages of insight that we discussed above. For the verification of scientific truth there is a (relatively) clear method of approach, but for the deeper process of insight – the creation of fresh scientific ideas about the world in the first place, there is no method. The case of lectio divina to which Frank Velic draws our attention, for example, contains the notion of reading from multiple perspectives. My own experience of science affirms that ‘reading’ nature in just one way is typically insufficient to set create a pathway to insight and new knowledge. Perhaps a more structured practice within science that drew on these traditions would be a way of instantiating the more recognized role of contemplation in science that I am recommending.

Natural Theology of Old and New Kinds

What do you mean by natural theology? (James Fowler)

From proverbs 2:

indeed, if you call out for insight

    and cry aloud for understanding,

and if you look for it as for silver

    and search for it as for hidden treasure,

then you will understand the fear of the LORD

    and find the knowledge of God.

And given the journey of the wise men – following the science (if you will) – bringing them to truth, a person – Jesus. To what extent is there a still a place for scientific truth leading directly to God? (Tim Craggs)

What Prof. McLeish is talking about – trying to see nature through God’s eyes – sounds remarkably like what the ascetic Fathers call ‘natural contemplation’. And the formulation ‘seeing through God’s eyes’ helps explain why such contemplation is seen as requiring a prior transformation in ourselves. An interesting question is the extent to which a scientific engagement with the creation of which we are part can contribute to that process of transformation – perhaps through deepening our awareness of our creaturehood? (Elizabeth Theokritoff)

Do you see it as an anthropological inspiration of the divine or merely seeing God within the confines of what you perceive nature to be? (James Fowler)

What is the methodology of looking with God into to the universe? Theologically, what are the spiritual disciplines of coming into alignment with the referent of God’s gaze into the ever-creative creation as the birthplace of wisdom/understanding? (Kaley Casenhiser)

Kaley Casenhiser asks the key question – so how do we do this? With what spiritual disciplines? Her question makes me think that science itself might be the ‘spiritual discipline’ that we seek, and that the answer is to recognise it as such, at least for those who practice it within a confessional calling. This may seem elitist and abstruse, but that is also, we recall, part of the problem of science currently – that it does not possess a ‘ladder’ of engagement from the lay to the professional. Once that is added back in, then the enjoyment of knowledge of the world becomes a shared spiritual discipline. I think that there are active extensions of this, however. For example, churches are natural local and global agents of ‘creation care’ as a result of scientific knowledge about anthropogenic effects on the planet. Kaley’s own work at the Creation Care Collective is, I think, a very good example (https://creationcarecollective.com/growingtogether/ ).

Kaley’s hint of an ingredient of the answer within her question – the ‘spiritual’ discipline that corresponds to a co-creaturely gaze into nature – suggests another direction, that of the third person of the Trinity. It is not merely that we are created in God’s image that allows us to invest meaning in this aligned, Divine gaze, but that we are ‘temples’ of the same Spirit.[2] This is surely the guarantee for Coleridge’s sanctification of the creative imagination as ‘little I AMs’. The point is made again by Malcolm Guite in contrasting Milton and Virgil in the connection, and disconnection, respectively, that they could claim with the foundational events of the distant past:[3]

For Virgil writing the Aeneid, there is an unbridgeable gap between the urbane Roman poet and the events of the heroic age he is describing. But, when Milton comes to describe the Spirit of God moving over the face of the water in the beginning, he does so in the conviction that the very same Spirit is equally present in his mind.

Science becomes a Spiritual (with a large ‘S’) discipline in this light. Again, perhaps this helps us to see why there is a tradition in confessional scientists, from Copernicus to Faraday, who see doing science as a form of worship.

So, there are two ways in which we must respond to this extremely deep question: first I think is the step of recognition that science is (or can be) the spiritual discipline of being a little I AM. Secondly, we need to let that insight drive a transformationwhat science is, certainly for believers, but beyond us, the communities we affect. There is one, perhaps bold, suggestion that presents itself here which parallels Sarah Coakley’s analogous thinking into a Théologie Totale – a practice of academic theology that is also an act of worship and religious contemplation. Might we explore a ‘Science Totale’, a practice of science, even a methodology, that unashamedly includes practices we would affirm as worship, meditation, contemplation of a devotional nature within scientific work? At the very least, such new modes of approaching scientific reflection might open up new channels of imaginative creativity, in which the deep, even sub-conscious interplay of structures and dynamics of our representations of the world come together in new ways. It would also call on new sources of desire – energies that are necessary to drive all creative processes.[4]

New Atheism

“Popular” science seems to be closely allied to a “new atheism”. Why do you think this is? (Gary Cliffe)

The way I look at it, science is a process; you make observations, and then develop theories — hypotheses if you like — to explain them (the World Around Us).  Facts emerge, but the theories or new hypotheses are a human construct and in a constant state of flux.  God doesn’t enter the process at all. (M E Bailey)

Doesn’t the conversation pantomime between the devout and the atheist need to be transcended? The crushing reality that ensues and the resulting understanding of the ‘nothingness’ that is exposed, this is the ‘something’ so powerful that can give meaning of life. The internal monologue of the struggle with our ‘self’ which characterises so much of the scholarship from Aristotle to Aquinas and to the Enlightenment is not necessary. I’m sure if Jesus was here right now, he would be saying: “You did what? You created what? A Church! No, No, that’s not what I meant !!” As William James stated, a ‘deflation at depth’ is necessary for Humans to ‘get out of the driving seat’, in order to allow an understanding of the concept of ‘there is a power greater than myself’. Discuss. (Andrew Meikle)

I wonder if M. E. Bailey helps to answer Gary Cliffe’s question? He hints at the story, so often constructed in the ‘new atheism’ (as well as the not-so-new to be honest), that the story of science is the story of a dawn-line slowly and inevitably traversing the world, replacing the darkness of ‘religious’ explanations of the world with the light of scientific ones. Among many modern voices, a version of this idea lies behind August Comte’s eras of civilization. Of course, the problem with it is that it can only be supported by processing historical evidence through a cherry-picker already set to its colour and size. It seems to me odd that it is ever claimed that fact of the ability to do science without a practicing belief in God is evidence of God’s non-existence. We don’t claim this for agriculture, medicine, knitting …, after all. The sleight of hand here is to pretend that the ‘facts’ of the world, ‘discovered’ by science amount to all that there is. What we have been affirming at this event is that science, as all human activity is relational. That relations between feeling, loving, fearing, suffering and hoping beings exist, and between them and their material world, and that these relations require healing and care, is itself an observation that, while true, is not a scientific one. It is part of the framing of science. Rowan Williams reminded us that we too often forget what it is to which we choose to pay attention. This is necessary to do science. It is necessary to do everything. But we should not forget that we are doing it, and that we need to pay attention to different things, and different aspects of the same thing, if we are to find the truth. 

Andrew Meikle reminds us correctly that this exercise of taking multiple perspectives onto the world will involve a de-centering of self. This is another reason, in passing, that the Book of Job, is so relevant a foundation-text for the relational discipline that became science. However, I cannot agree that being the Church is not an appropriate response to Jesus. Our church may indeed leave a lot to be desired. But I believe that a radical community in which there is no male nor female, no slave no free, no Jew or Gentile, that sort of radical community which also ‘groans with all of creation’ is to be the church that can effect the changes we have been discussing.


I tried as a middle school science teacher to excite my student’s imagination. For example, I challenged them with the true statement of there only being one simple machine. Based on that information explain why there aren’t eight simple machines instead of the six we are told about. Why isn’t there a greater exposure to hermeneutics in education? (Richard Dube (he, him, his))

How could concepts such as creativity, imagination, joy of science, and their relation to Christian faith (looking WITH God) be combined into a module for teenagers at (UK) Sunday schools or (NL) midweek catechism sessions? (Jaap Den Doelder)

Talking about little leaps, can we have classic texts such as Faraday’s History of the Candle, or Darwin’s Origin of Species as readings on the Humanities side? (Deepanwita Dasgupta)

As an undergraduate scientist, “old science” seems full of poetry (Kekule’s, Loewi, etc) and a marvellously exciting process, while all the new fellows at my college just use machine learning or a set of bought assays! – is there hope for doing this excited poetic science even as technology advances? Google is unweaving the rainbow before we can look! (Ben Norris)

Might the ongoing and growing issue of Climate Change be a significant driver in persuading curriculum designers to move from their domain silos of separate subjects to a model where a range disciplines are in respectful dialogue and bring their expertise to bear on the great existential threat?   (Adrian Brown)

People like the panelists are part of the problem from a student’s point of view – universities use A level & GCSE grades to accept students for their courses.  Also universities want the ‘best’ students! (Martin Bassants)

That experience of sudden ‘insight’ – the coming together of ideas when making connections and discovering congruence – is not exclusively an activity when reasoning across science and religion. Do you agree that what makes it so hard today for children in school – is that this activity of ‘making connections’ is excluded by the setup of the isolated science classroom. If yes – and if schools demand assessment – can we ‘assess’ ability to make connections? (Berry Billingsley)

I think the ladder analogy is really important. Climbing higher involves work and effort from a secure lower step. I have a concern that in science teaching we try to be inclusive by holding it up as ‘easy’ – with perhaps the accumulation of facts being the relatively simple and simplistic way to measure it.  Do we need to get the idea across that you can have ‘fun’ as well as satisfaction from the hard as well as from the trivial. Not just in science, genuine thinking in any subject IS hard as you need both knowledge and imagination (and thanks to Tom poetry!). And also challenging debate! (Chris Hudson)

In addition to what may need to be improved in teaching science in schools and universities (as discussed this evening), what could be done at the other end – eg at seminaries / theological colleges – to improve the conversation and mutual learning between science and theology? (Guido de Graaff)

There are some wonderful examples of fresh, interdisciplinary and radical teaching in these comments and questions that are worth simply sharing with a ‘hooray,’ I think. I do know of some very successful science teaching that uses examples from the history of physics, for example, to teach the physics itself. There is every hope that, alongside a core curriculum of scientific knowledge, there will be room at every stage for an element of exploratory, even ‘playful’ science,  as Chris Hudson suggests, so that pupils will never have experience that would lead them to conclude that ‘science has no room for my imagination.’ Berry Billingsley points to the experience of ‘insight’ that may arise if this is done.

There is also a desperate need to develop post-16 curricula that do not ‘silo’ young people into the strict A-level boxes against which Martin Bassants inveighs. Texts such as Faraday’s candle, or current political issues such as climate change, or the Romantic poetry of the rainbow, are all examples through which humanities-leaning students might be found ways to shape a dialogue of learning with science, and by which science-leaning students might develop a maturity of language, writing and history. 

Christian Practice

Is part of the problem that Christians and many religious people have lost the art of contemplation? For example, Christianity in churches tends to represent God and what it offers as something to gain as if from a distance, rather than as closer to us than we are to ourselves, to half quote Augustine. To put it more epistemologically, Christianity has bought into the modern flip, in which truth is no longer thought to belong to the subjective realm, but the objective. (Mark Vernon)

Can a panelist address the role of discursive reason, or “rational” intellect? In eastern traditions it is often seen as divisive and dissecting. That is, it understands by dividing into component parts. It is not a “clear” seeing but rather heavily conditioned. Quite the opposite of “DIS-covery”. In some sense this suggest that “imagination” is not an activity of the “self” but rather a quieting of the self. A move beyond conditioning into open awareness. The reason I ask is because as a scientist it seems the generation and imagination of hypothesis is too often confused with deep thinking which in turn is often quite the opposite of unconditioned sight. (Carlos Neira)

Especially in evangelical churches, contemplation is rather rare. The nearest opportunity, even permission, we get is corporate worship. In these same churches there is the alarming suspicion of science and the active rise of the tawdry conflict between science and faith, witnessed by the rise of heterodoxy of young-earth creationism. Isn’t this a real and present danger to our Christian faith and witness? What coordinated steps can we take to provide resources to churches that actively include real science in the contemplation of corporate worship? (David Lee)

These comments and observations are so interesting, because they indicate that there is a forgetfulness of contemplation in (at least some) places in the church, as well as in science. As Mark Vernon suggests, this is not unconnected with the pretended dissection of subjective and objective that I tried to talk about in the lecture. Carlos Neira articulates beautifully the ‘in-betweenness’ of contemplation in science that allows the generation of ideas rather than the routine of measurement and checking. Perhaps there are new avenues of prayer and spiritual contemplation that might be fed by the wonder of material contemplation?

Lessons from the History of Science and Technology

Thanks for a great talk. Historians of science are also keen to think about practical science as well as what’s sometimes thought of as ‘pure’ science.  This involves awkward and apparently less spiritual things than Boyle talks about, such as money … I wonder where technology fits into your account, and the practice of thinking/imagining with our hands? (Charlotte Sleigh)

Might I suggest (from my own experience) that Industrial Science (if such a thing is allowed as a definition) provides plenty of cases where awe, wonder leads via creative technology development to results that might encourage the lay public in their faith in science (Jaap Den Doelder)

Question for Tom: why do you think it was possible for early modern people like Newton, Boyle, etc. to transgress disciplinary boundaries (e.g. between theology and natural philosophy), in a way that we are not able to do in our society and universities today? (Pui Ip)

As both the lecture and the response tonight showed, there’s a rich history of thought within the European Christian tradition that we can draw on to reclaim a contemplative, imaginative practice of science. If we aim to cultivate this kind of culture around science in multicultural societies with all kinds of complicated power dynamics at play, don’t we need to cede some of our intellectual ground to thinkers from other traditions which have less of a stark divide between science and contemplation/religion in their recent history?(Jenna Freudenburg)

Religion and science have been so intertwined since the very earliest of days. Religion to understand ourselves and our creator; science to know ourselves in the great scheme of the Almighty.  Why, how and when did religion and science become such “opponents” in the search for “truth”? When did the clear divide of what they are searching for become so blurred? The seemingly dogmatic argument in current times of “it is either science OR religion” ignores many beautiful characteristics of both disciplines.  When will scientists and the public who proclaim every new discovery, by either disproving a former scientific statement or at least proving it not concrete as formerly claimed, as absolute truth come to realise it proves the opposite for the argument of science as the sole custodian of that trophy?  Ignoring the miracles of both leads to a far less enlightened world. (Matt Burrows)

Would you recommend the education of the medieval concepts of virtue ethics, development of habit to graduate students in the hard sciences? This education would include the practice and perfecting of scientific experimentation, interpretation, to the point that there is not only technical mastery and data interpretation, but also to passively let the data inspire us to generate novel scientific paradigms (to be Kuhnian). How would you paraphrase the medieval contemplative terminologies to contemporary science postgrad students?(Arvin Gouw)

John Keats’ concept of ‘negative capability’ which has been given a more recent expression in popular culture thanks to Dust and the heroine Lyra’s use of the alethiometer in Philip Pullman’s His Dark Materials’ trilogy (the irony of bringing these books up in a debate involving theology is not lost on me!) springs immediately to mind as having some possible bearing on the understanding of the contemplative disposition and how it opens us up and connects us to the universe. (Kersten Hall)

Jaap Den Doelder and Charlotte Sleigh come at the question of technology from very different perspectives, and adding the essential historical insight into the entwining of industry and science, it is clear that we need to reform our fragmented notion of ‘pure’ and ‘applied’, just as much as we need to reconfigure and relate ‘science’ and ‘humanities.’ I am not sure that there are fundamental reasons why money, economy and industry should be less ‘spiritual’ than science – we are the inheritors (in the West at least) of centuries of snobbism over the hierarchical structure within which philosophy and industry occupy and upstairs and a downstairs, respectively. That also needs to change.

As Jaap well knows (and he is one of the great industrial scientists who taught me this), that there is every opportunity for healthy two-way flow of ideas in science between industry and academia. In fact, the fundamental piece of science on which we worked together – the relationship between the topological structure of branched polymers and the emergent properties of the viscoelastic fluids that they form – could only formulate its core-questions in the face of observations in an industrial setting. Yet they called on the deepest new imaginative work in statistical mechanics, which repeatedly called on exchange of samples, data, theories between university and industrial laboratories. I am increasingly convinced that we ought to write that story up as a case study in how ‘pure’ and ‘applied’ dissolve! And Charlotte’s point about ‘thinking with our hands’ is so very prescient – and I think might open up new routes into contemplative practice in science and spirituality (I think of the ‘Messy Church’ movement, for example).

Pui Ip’s question is perhaps a little strange given that it is from someone, to someone else, who have both ‘transgressed disciplinary boundaries’ in a way that he declares impossible (I do not claim for myself that I have done it successfully). But perhaps that indicates the answer: there are indeed institutional and cultural barriers to doing this; the rest is simply fear and lack of confidence. We live safely in our disciplinary silos of curricular, research topics, peer-review, professional organization, promotion criteria, journals, and so on. Quite a set of castle walls! But they do have doors in and people can walk through them. The more that do the better.

Jenna Freudenburg’s question turns our gaze not only on history but outside the Christian tradition, and is well taken. There have perhaps been misguided or overinflated attempts in the past to relate, e.g. modern physics to aspects of Eastern mysticism (I am thinking of The Tau of Physics and the like). But there is much more there of richness to absorb more gently. The ‘Ruist’ tradition of China. For example, contains clearer ideas of the embeddedness of human observers of nature in nature itself (the first of my four ‘turns’) than Western tradition, and poetry was always vital in Ruist cosmology.  

At the same (10th and 11th century) time, the great Islamic tradition of science was preparing the critical assessment and development of Aristotle that inspired, of course, the 12th century scientific renaissance in the Latin West. There is much of relevance here to students today, as Arvin Gouw suggests. I might have developed, for example, the insight that emotion and reason go hand-in-hand in working within the liberal arts, including the mathematical arts of the medieval quadrivium (they termed them aspectus and affectus). We need to teach our scientists not to be afraid of the emotional structure within the creative process of their work. And, equally ironically, Philip Pullman has (in Oxford theologian and contemporary of Darwin Aubrey Moore’s words) ‘in the guise of a foe, done the service of a friend’ in bringing a contemplative and poetic alternative framing of science.

Sarah Coakley adds:

 I don’t think we can simply fuse all kinds of ‘contemplation’ into one without some more intricate reflection on what metaphysic and practice(s) attend different versions thereof. There are certainly family resemblances between all sorts of things in this area (secular cognitive therapy, Buddhist mindfulness, attention to ‘school studies’, aesthetic ‘seeing’ of art objects, scientific wonder at the natural world, and so on); but ‘contemplation’ in the classic Christian sense does involve long-term commitment to particular practices of vulnerability and openness to God, including the enduring of inner ‘noise’ and many psychic upheavals, etc., en route to union with God. Above all, the major complication of sin cannot be left out of the Christian account of these matters, since sin – ex hypothesi – affects our senses and perceptions so profoundly. Hence the great interest in early modern science (see Peter Harrison’s work) in whether science itself could overcome these sin problems. 

In short, I don’t think the rhetorical call to ‘contemplation in science’ can, just by itself, overcome the profound issues of sin and blindness that those of us who are religious believe to be hugely problematic; nor can it short-circuit the commitments that much secular science has made to metaphysical adherences that stymie religious belief at the outset. 

Having said that, I profoundly agree with you that learning how to ‘see’ the world in the light of the divine infusion is the great invitation of Christianity, and hugely important to the scientific task too. But I fear there are no short cuts into this – which is why I’m continuing to work intensively on ‘spiritual sensation’ in the tradition and its many and conflicting interpretations. 

[1] Tom McLeish (2019), The Poetry and Music of Science. Oxford: Oxford University Press

[2] I am indebted to Rosie McLeish of Emmanuel College, Cambridge, for this point.

[3] Malcolm Guite (2012) Faith, Hope and Poetry. Oxford: Ashgate

[4] This interplay of desire (and emotion generally) and cognition in all creative process came to the fore in the research for The Poetry and Music of Science, surfacing in its own chapter (6)

Boyle Lecture 2021: The Rediscovery of Contemplation in Science

Just in case any reader of this blog has not received notice by any other channel, it occurred to me that I ought to post the announcement here.

Tonight (February 3rd) at 6pm GMT/1pmEST The 2021 Boyle Lecture will be given by Tom McLeish FRS on the title above.

Access to the Boyle Lecture will Premiere through ISSR’s YouTube channel, which can be found here: 


To join the panel discussion afterwards (7.15pm – 8pm GMT), which is live register here:


Wisdom from Soft Matter

This week saw the publication date of a little book that, I confess, I am very excited about. I have always enjoyed and admired the Very Short Introduction series from Oxford University Press, and learned a great deal from the 30 000 word lay guides to topics from Abolitionism to Zionism, and everything (in several hundred titles) in between.

So I was thrilled to be asked by OUP to write Soft Matter – A Very Short Introduction, about three years ago. The final little volume was published on Thursday. This is the delightful field of interdisciplinary science in which I have worked as a theoretical physicist since the mid-1980s, a generation and more that has seen its birth and transformation into a global and mature field. One of the satisfying characteristics of soft matter is that its subject connects materials we meet with in daily life with deep scientific ideas. Rubber, creams, foams, inks, and even food – all these provide windows onto the molecular and microstructure worlds beneath their familiar properties.

The lovely soft matter example of colloids: (left) at the test-tube
scale, and (right) under the microscope

Soft matter reminds us of one of the most beautiful functions of science – that it reminds us of the difference between the ‘familiar’ and the ‘understood.’ Just because we are familiar with the experience of sitting on chairs and not falling through them does not mean that we understand the ability of atomic structures, themselves composed almost entirely of empty space, to support us. Just because we are familiar with the huge extensibility and resilience of rubber does not mean that we understand how a solid could be deformed by 500% without breaking. Rather than titling the chapters, therefore, under their scientific structural categories of ‘colloids’, ‘polymers’, ‘foams’ etc., they became, ‘milkiness,’ ‘stickiness,’ ‘foaminess,’ and so on.

Soft Matter is also satisfying because it brings communities and ideas from physics, chemistry, materials science, engineering and more. It embodies the interdisciplinary that requires team-building, an appreciation and understanding of each others’ methods, experiments and models. The polymer (plastic) research that I spent 25 years pursuing required chemistry to make the molecularly-tailored materials, materials scientists to measure their special flow-properties, experimental physicists to explore their molecular-scale deformation with neutron-scattering, chemical engineers to design carefully-interrogated process-geometries for them, theoretical physicists to create mathematical models for the way that elastic flow emerges from their entangled molecular chains, and computer scientists to develop and apply novel simulations of the flow. Furthermore, this broad academic community needed to talk continuously to a ‘mirror-team’ in a consortium of industrial laboratories, with whom we exchanged data and ideas.

It was therefore interesting that when the Principal of Oxford’s theological seminary Wycliffe Hall, Michael Lloyd, asked me as speaker for the college’s weekly ‘Principal’s Hour’, he suggested that I talk on ‘Soft Matter’ rather than the science-theology or even medieval science work that I also work on. Bravo Wycliffe Hall for an interest in science itself! There were great questions on the science of Brownian Motion, the fascinating dynamical source of softness itself, for example. But the hour also gave me a chance to contemplate the human and theological implications of the unexpected ability to do science in the first place.

The students did not, of course, entirely escape a visit to the Faith and Wisdom in Science core-text: the biblical Book of Job, shot-through as it is with reflection on the natural world. Even Job himself chooses soft matter properties at one point to complain at the chaotic decay of the material world outside, and even within him:

The Lord Answering job out of the Whirlwind by William Blake

You molded me like clay, do you remember?  Now you turn me to mire again. Did you not pour me out like milk?  Did you not curdle me like cheese? With skin and flesh you clothed me, with bone and sinews knit me together. (Ch 10)

We were able to look at great Hymn to Wisdom of Job chapter 28, and its musing, through the experience of miners under the ground, on the unique way that human eyes perceive, as those of its Creator do, the hidden inner structure of the Earth. It bore close comparison to the description of the scientific imagination that appears in many later ages. The words of the 13th century polymath Robert Grosseteste, for example, knows what it is to imagine the inner structures of materials that give rise to their observed and felt properties:

“… the penetrating power in virtue of which the mind’s eye does not rest on the outer surface of an object, but penetrates to something below the visual image.  For instance, when the mind’s eye falls on a coloured surface, it does not rest there, but descends to the physical structure of which the colour is an effect.  It then penetrates this structure until it detects the elemental qualities of which the structure is itself an effect.”

Soft Matter illustrates this extraordinary human gift perfectly. When we look at milk, we may ‘see’ myriads of tiny fat particles suspended by continual thermal jostling from water molecules. When we notice the stringy way that melted plastic flows, we may ‘see’ a molecular jungle of entangled molecular chains.

The delicate interplay of order and chaos within the forms of soft matter are themselves a metaphor for the tension of order and chaos necessary for life to flourish, as Job found. Soft matter science is also, as the final chapter of Soft Matter – A Very Short Introduction explains, itself helping us to understand how living tissue works. One day it may point to the way life itself originates.

The Remarriage of Reason and Imagination

Image from the Catholic University of America Centre for the Study of Statemanship

Thinking in the modern world is characterised by fragmentation, opposition, split. The ubiquitous Cartesian dualism of mind and body (themselves split off by Descartes from talk about God) is just one of a set of divisions that, over three centuries, have worn themselves so smoothly into the fabric of the modern mind that we take them for granted, as self-evident, normative, obvious. Yet a longer historical, and wider geographical, view of cultural landscapes can put these assumptions into perspective, making it clearer that they are, just that – assumptions that may have served us for a while, but which we must move beyond.

Cover image courtesy of
Alexandra Carr

For once mind and body are dislocated, other dualisms follow. The opposition of subject and object, and of the physical and moral universes (Kant), of poetry and science (early Coleridge), of science and religion (Draper and White) – that emblematic late modern conflict, are all examples. But underneath all these fragmented separations lies, paradoxically, a set of connections. They all stem from a deliberate attempt to sever reason from imagination, and to hide the essentially theological foundation that, ultimately, holds them together.

In this short reflection, I want to uncover some of the reconnections of imagination and reason that lay behind the writing of The Poetry and Music of Science, in the company of just a few of the important thinkers from different centuries who have, perhaps, seen further than others. The high medieval polymaths Robert Grosseteste and St. Bonaventure, The Romantics Samuel Taylor Coleridge and George MacDonald, and the late modern philosopher Mary Midgely and contemporary poet Malcolm Guite will help us unpack the deep structure behind Einstein’s celebrated aphorism

Albert Einstein

Knowledge is limited; Imagination circles the world

The early modern renunciation of imagination as a route to knowledge in a complementary partnership with reason, is perhaps the singular most characteristic shift from medieval and renaissance natural philosophy to early modern science. So we find the collective and successive reinvigoration of sense, natural knowledge, imagination, memory and understanding characteristic of the philosophy of science of the 13th century replaced by an insistence that science should draw from fact and reason alone. At best a move to simplify the task of comprehending the world, but at worst the first step on the road to destroying it, it behoves us urgently now to think again.

Medieval Insight into Imagination

We start during an epoch of sophisticated and energetic free thinking before the multiple fragmentations set in. This is the remarkably creative intellectual world of the 13th century Latin West, invigorated by newly-translated science and philosophy from both Ancient Greece and early-medieval Islamic commentary. Contrast this summary of what we might term ‘theological epistemology’ from the early Franciscan thinker St. Bonaventure’s 1259 Itinerarium Mentis ad Deum (the Mind’s Road to God)

Therefore, according to the six stages of ascension into God, there are six stages of the soul’s powers by which we mount from the depths to the heights, from the external to the internal, from the temporal to the eternal–to wit, sense, imagination, reason, intellect, intelligence, and the apex of the mind, the illumination of conscience (“Synteresis”). These stages are implanted in us by nature, deformed by sin, reformed by grace, to be purged by justice, exercised by knowledge, perfected by wisdom.

with a ‘statute of limitation’ from Thomas Sprat, writing what was essentially the manifesto for the Royal Society in 1667, who urged his readers to:

separate the knowledge of Nature from the colours of Rhetoric, the devices of Fancy or the delightful deceits of Fables.

The first knits the imaginative and reasoning aspects of the mind together in a journey towards understanding, the second insists on a reduction in those faculties chosen as recruits to a knowledge of the world. To the modern mind, Bonaventure seems to be making a purely inner, ‘spiritual’, journey. But this is itself a projection of our modern mindset. For the early Franciscans, a discovery of God would always also entail a discovery of the divine mind, in which lies the conception of the world in all its multilayered physical and material polychromy. So Robert Grosseteste can write a generation before Bonaventure of the journey of the informed imagination beneath the surface of the world in his commentary on Aristotle’s Posterior Analytics:

A 14th century image of Robert Grosseteste as Bishop of Lincoln

Sollertia [the Latin translation of agchinoia, which might also be rendered ‘acumen’], then, is a penetrative power by which the vision of the mind does not rest on the surface of the thing seen, but penetrates it until it reaches a thing naturally linked to itself . In the same way as corporal vision, falling on a coloured object, does not rest there, but penetrates into the internal connectivity and integrity of the coloured object, from which connectivity its colour emerges, and again penetrates this connectivity until it reaches the elementary qualities from which the connectivity proceeds.

Without the ‘penetrative power’ of the ‘vision of the mind’ there can be no conceptualisation of nature’s inner structure. If 21st century science has forgotten this, 13th century science had not.

The advantages of Cartesian division are methodological – a limited focus on experimental method (though that itself is a work of immense theological imagination), hypothesis-testing, clear differentiation of subject and object – got modern science going. But the costs are becoming clearer, for not only are the dehumanising impoverishments of the ‘Two Cultures’ narrative diminishing possibilities in the education of today’s children, and the potentials of the adults they become, but the very framing of science as unimaginative is closing off routes to new discoveries, and placing the social and political framing of science at a dangerously alien distance from most people.

Coleridge and the Source of Imagination

A strong counter-cultural voice at the turn of the 18th to 19th centuries belonged to Samuel Taylor Coleridge. Although it was Coleridge who insisted that the opposite of ‘poetry’ was not ‘prose’, but ‘science’, by this he meant the dreary assembly of fact and mechanism that science had become under the aegis of its national institutions. A closer look at, for example his long collaboration in both poetry and chemistry with Humphrey Davy at the Royal Institution, or his collaboration with William Wordsworth on the Lyrical Ballads with its strong invocation of science as a potential source of poetic song, indicates that he believed that the opposite could be true. At Davy’s invitation, Coleridge lectured on Poetry and the Imagination at the Royal Institution in 1808, in spite of Davy’s clearly mixed view of the poet’s genius which, though possessing ‘exalted genius, enlarged views, sensitive heart and enlarged mind’, still wanted, in the scientist’s opinion, ‘order, precision and regularity.’

Samuel Taylor Coleridge by Peter Vandyke (source: Wikipedia)

Far less well-known than his early poetry, written at the end of the 18th century with its well-deserved reputation, are Coleridge’s writings that spring from theological and philosophical reflection over the first decades of the 19th. His own experience of the creative imagination, fed as it was both by the. science he loved (he read Newton’s Opticks in its entirety), together with a powerful, even shocking, personal revelation through the contemplation of Moses’ encounter with God at the burning bush (Exodus chapter 3). He writes in chapter 13 of his Biographia:

The Primary Imagination I hold to be the living power and primary agent of all creation as a repetition in the finite mind of the eternal act of creation in the infinite I AM.

As Malcolm Guite has pointed out (see below), Coleridge restores the original, and eternal co-existence of subject and object, whose divorce had been codified by Kant, in the theological insight that humans, created in imago Dei are ourselves both created and observed object and living, creating and participating subjects. In a remarkably prescient insight, Coleridge is here writing, not immediately of the imagination that science, or of poetry, requires, of hidden inner structure to nature (that, related, human endeavour is the ‘Secondary Imagination’, but of ‘mere’ sensory perception itself – this is the ‘Primary Imagination’ whose power draws from the projected energies of Creation itself. But once this is understood, the connectivity between the proceeding, and cousinly, secondary imaginations of both science and poetry is laid bare. The greatest of all early modern. astronomers, Johannes Kepler, would have understood – he who contemplated the humble glory of ‘thinking God’s thoughts after Him.’

George MacDonald and the Power of Imagination

The inventor of ‘fantasy literature’, lauded by C.S. Lewis and J.R.R. Tolkien, is himself now not very much read. Yet George MacDonald’s literary production, including fictional works such as Lilith, opened possibilities for the literary creation of worlds than enabled these, and others to call them up into the forms of Narnia and of Middle Earth that have not yet seen an equal. Like Coleridge, MacDonald also wrote in philosophical/theological mode, and unfortunately like the poet, this genre is much less well known than his artistic writing. It is worth quoting a core paragraph from his 1867 essay, The Imagination, its Function and its Culture in full. It starts in an imagined dialogue with a disciple of Thomas Sprat:

Illustration from MacDonald’s The Golden Key

“But the facts of Nature are to be discovered only by observation and experiment.” True. But how does the man of science come to think of his experiments? Does observation reach to the non-present, the possible, the yet unconceived? Even if it showed you the experiments which ought to be made, will observation reveal to you the experiments which might be made? And who can tell of which kind is the one that carries in its bosom the secret of the law you seek? We yield you your facts. The laws we claim for the prophetic imagination. “He hath set the world in man’s heart,” not in his understanding. And the heart must open the door to the understanding. It is the far-seeing imagination which beholds what might be a form of things, and says to the intellect: “Try whether that may not be the form of these things;” which beholds or invents a harmonious relation of parts and operations, and sends the intellect to find out whether that be not the harmonious relation of them—that is, the law of the phenomenon it contemplates. Nay, the poetic relations themselves in the phenomenon may suggest to the imagination the law that rules its scientific life. Yea, more than this: we dare to claim for the true, childlike, humble imagination, such an inward oneness with the laws of the universe that it possesses in itself an insight into the very nature of things.

The unmistakable resonances with Grosseteste’s sanctified gaze beneath the surface of the world, and the insight from Coleridge that we possess ‘the world in man’s heart’ because we are ‘little I AM’s, combine with the juxtaposition of ‘poetic relations’ with ‘the scientific life’. MacDonald continues, ‘to inquire into what God has made is the main function of the imagination … The man has but to light the lamp within the form, his imagination is the light, it is not the form.’ This is as close as I have found in existing writing to the reason I gave for writing about the ‘Poetry of Science’. As some readers have complained, the book does not discuss poetry about science, or inspired by science at all. Rather, poetry becomes the metaphor for science because both shape the power, or ‘light’, of imagination by the creative constraints of ‘form’. In poetry the form is literary, in science simply the form provided by the world as we observe it.

Mary Midgley on Science, Poetry and the Imagination

But perhaps as Coleridge and MacDonald hint, there is a closer connection between science and poetry than the merely metaphorical. The North-East of England’s most visionary 20th century philosopher, Mary Midgley chose Science and Poetry as the title of a book which, although like The Poetry and Music of Science does not discuss much poetry, nevertheless sees the poetry-science nexus as the necessary road to bridging the science and arts, imagination and reason, and recovering freedom from determinism.

In particular, Midgley takes as a theme for the book the ‘dependence of detailed thought on entirely non-detailed visions’. This captures precisely the first stage of the ‘creation narrative’ I described in Poetry and Music of Science, as common in artistic creation as in scientific, in which a distant, defocused, half-conceived vision of a poem, picture, composition, theory, hypothesis, novel … is glimpsed, but without at first either a firm structure or a clear pathway to its realisation. It is the imaginative conception of this apparition, and its generation of the desire to discover it in its fullness and entirety, that Midgley terms ‘poetry’ for the sake of her thesis. She continues:

Mary Midgley

What makes theories persuasive in the first place is some other quality in their vision, something in them which answers to a wider need. There is always an imaginative appeal involved as well as an intellectual thirst for understanding.

Science and Poetry also tackles the related dualism of subject and object, noting that there is a right, but also a wrong way of attempting to unite them. The wrong way is to make something called ‘consciousness’ an isolatable, objective puzzle. In this endless self-referential and circular labyrinth, the subject becomes it’s own solipsistic object:

To suppose that we have a problem about the existence of other minds is to be in trouble already because it is to have started in the wrong place – Descarte’s wrong place. If we once sit down in that place we shall never get rid of the problem (Bertrand Russell, who was wedded to this starting point, never did get rid of it). This approach conceives of minds – or consciousness – unrealistically as self-contained, isolated both from each other and from the world around them. It is terminally solipsistic.

Midgley’s vision bursts the Descartian isolationism that insists on suppressing the essentially relational task of all art and science. The task is a healing of a set of broken relationships to each other and to the natural world itself. As George Steiner put it (in Real Presences):

Only art can go some way towards making accessible, towards waking into some measure of communicability, the shear inhuman otherness of matter.

But art (and of course, pace Steiner, science – for what else could science be doing?) can never hope to do this if its ‘imagination’ is caught in a solipsistic loop of self-reference. It must be, as Steiner writes elsewhere in his weighty little book, ‘a wager on transcendence.’ Imagination’s source, as Coleridge perceived, is outside us, but, as MacDonald clarified, shines though us illuminating the world, and each other’s consciousness, by reflection.

Malcolm Guite and the Epistemology of Imagination

The poet, scholar and priest Malcolm Guite, who has just completed a term as chaplain to Girton College, Cambridge, has written a glorious book on the topic of ‘re-imagining imagination’. Faith, Hope and Poetry; Theology and the Poetic Imagination (Ashgate 2012). His declared task is to reconceive (which amounts to the rousing from a cultural amnesia) the imagination as a route to knowledge in partnership with reason. Guite has no illusion over the magnitude, nor the essential importance, of this task, and articulates supremely well the challenge of centuries of modernist (and pre-modern too) assumptions that confuse (in Coleridge’s terms) ‘imagination’ with mere ‘fancy’, and so debar it from any efficacy in the acquisition of knowledge. The illumination of Christian theology and experience becomes essential to understand both the problem and the task. From Augustine (if perhaps mis-read) to Bacon, reason is supposed less ‘fallen’ less damaged or prone to mis-shapen perversion than ‘imagination’, yet ‘these two ways of knowing are mutually enfolded and depend on one another.’

The key idea, threading its way through the book (which also picks up on Midgley’ writings and above all those of Coleridge) is that:

Malcolm Guite

If part of the Imago Dei is itself our creative imagination then we should expect the action of the Word, indwelling and redeeming fallen humanity, to begin in, and work outward through, the human imagination. If this is so then we should be able to discern the presence of that Word in the works of art which are the fruit of out imagination.

Furthermore, Guite knows that this must be true of science as well:

I want to support [Mary Midgley’s] thesis that the poetic imagination is fully engaged in scientific endeavour and also that poetry is capable of refining and expressing the doubt, as well as the faith, that is part of the dynamic of both science and theology.

Where poetry, science and theology combine is in the perspective or the projection of gaze onto and into the world that I also wrote about in Faith and Wisdom in Science. We look upon the world as an image, and with the same imagination of the gaze of love that is bestowed by its first Creator. Our poetry, finding form for expression, and our science, exploring in the imagination of theory the form of observational constraint, are related acts of ‘waking into some measure of communicability, the shear inhuman otherness of matter.’

Commenting on Coleridge’s celebrated long poem The Ancient Mariner, Guite comments on the moment of redemption when the mariner gazes down at a shoal of writhing water-snakes illuminated by reflected moonlight, and realises their happiness and beauty. ‘It is though by seeing these creatures in moonlight he is given, however briefly, some notion of how God sees them. That idea, that we must learn to look upon nature from a Creator’s perspective, turning that into a creator’s perspective, is a very ancient, and poetic notion.

Job and the Wisdom of Imagination

It is, precisely, in the highest and best of all Hebrew poetry in the Bible that we are presented with the same double and patterned vision of divine and human imaginative gaze onto the natural world. For when Yahweh finally answers Job’s anguished demands for an answer to the uncontrolled and unjust world as it appears to him, the righteous suffering human is taken (in Job chapter 38) on a a questioning exploration of the heavenly, watery and earthly structures of that very cosmos:

When all the angels sang for joy
Job Ch. 38
Illustrated by William Blake

Have you entered the storehouses of the snow? Or have you seen the arsenals of the hail, …

Where is the realm where heat is created, which the sirocco spreads across the earth? Who cuts a channel for the torrent of rain, a path for the thunderbolt? ...

Can you bind the cluster of the Pleiades, or loose Orion’s belt? Can you bring out Mazzaroth in its season, or guide Aldebaran with its train? Do you determine the laws of the heaven? Can you establish its rule upon earth?

These are the questions, sprung from an imagination confronted by the tensions of nature’s order and chaos that require a reconciliation through deep observation and contemplation. The great poem of the ‘Lord’s Answer’ to Job, from which these verses are selected, is a response to many earlier sections of the text. In some ways it responds to the entire sequence of discourses between Job and his friends, for whom natural objects (rocks, plants, trees, stars, milk, winds, floods …) are a continuous source of metaphors for the human condition. It certainly picks up on the references to Genesis in chapter 3 of the book. But its chief precedent is the equally great poem, the ‘Hymn to Wisdom’ of chapter 28. Here the uniquely human potential to explore the hidden structure of the world is portrayed through the underground view of the miner, who sees what no animal eye can see – the jewels, seams of precious metals, and ‘the earth transformed below by fire’. There is a shocking juxtaposition and comparison with the Divine gaze, which at the hymn’s close is revealed:

God understands the way to it
    and he alone knows where it dwells,
 for he views the ends of the earth
    and sees everything under the heavens.
 When he established the force of the wind
    and measured out the waters,
 when he made a decree for the rain
    and a path for the thunderstorm,

For Basil the Great, who wrote the first major commentary on Job that we possess, the attribution of this divine perspective on nature was too much to swallow – he assumed that the opening verses on the subterranean vista was also referring to divine sight. But the Hebrew wisdom verse is clear – the mark of the maker that is to perceive the world by measure is also a vocation to humans mandated to make that world fruitful.

The Theological Energy of Scientific Imagination

If Malcolm Guite is correct when he conjectures that poetry is inextricably God-breathed, and so will display signs of transcendence even at the authorial hands of those who deny the divine, and if it is true that the same energies of imagination and divine perspective are present in the poetic form which we call science, then it ought also to be true that science itself cannot help but signify the transcendence of love, reconciliation, hope and resurrection.

I must insist that this is not a ‘natural theology’ of the 19th century sort advanced by Paley and others. That hopeless and watery fancy that we would perceive God through observing nature, as deducing the existence of a watchmaker from the intricacies of a watch, is as far from this idea as night is from day. More precisely, the adoption of the Creatorly gaze by the human creature possesses arguably an exactly opposite orientation. For, rather than looking through nature to a distant, dim and distorted divinity, we are called to look into the world from the same perspective as God. The closer we are to God, and the more faithfully we look with his gaze, then the less directly we see him. The more our perception and attitude towards nature aligns with that of its Creator, the more we look with, rather than towards, him. So the theological import of science is not that it ‘gives evidence for God’ but that by doing science at all we participate in the mystery of a relationship with the rest of creation that holds together both the transcendence of distance and the imminence of our own materiality.

Artwork from Reverend Ally

The glimpses of eternity and hope that Guite finds in the poetry of those who disavow theistic belief are there for those who have eyes to see at every turn of our science. For what is true of the one imaginative energy, whose source is from the Creator himself, must be true of the other. If both poetry and science ‘wake into some measure of communicability the shear inhuman otherness of matter,’ then both must open pathways to such transcendence both ways. A covenant relationship with the material world (another idea from the poetry of Job) is also a covenant relationship with its Maker. One cannot look upon Le Maitre’s mathematical solution of Einstein’s field equations for the universe as a whole without thinking of Julian of Norwich’s vision of the hazelnut in her cupped hands that was revealed as ‘all that is’.

Electron micrograph of a
self-assembled lipid vesicle.

A moment’s reflection on the theory of self-assembly of biological cells’ lipid membranes, displaying spontaneous order among a sea of thermal chaos that turns out to be necessary to their formation, parallels perfectly the Joban discourse of how apparently chaotic floods are channeled into water-courses, forming their pathways. The apparently threatening inhuman forces of nature that confront us in our immaturity become understood and reconciled when we build the ‘poetic’ forms of a scientific theory of nature to meet them.

Like the Ancient Mariner turning from the initial strangeness and fear of the roiling underwater snakes and finding symbols of healing, we can face the inhuman materiality of the world through the scientific imagination, and turn from its infinite spaces without horror, but with a redeemed reverence and respect, and an understanding that leads us home.

Racism and the Weakest Link


Anti-racism protesters have torn down a statue of 17th century slave owner Edward Colston in Bristol, United Kingdom on Sunday (CNN.com)

Last week, protesters in Bristol hauled down a public statue, a 19th century memorial to Edward Colston, a 17th century slave-trader from the city who, as well as bequeathing his wealth to city charities, was responsible for transporting about 80 00 men, women and children from Africa to the Americas. That act has triggered a week of protests, including calls for similar acts of cleansing.

Predictably, the shrill and judgemental public arguments have started. For one side, the act was right – an appropriate response to the brutal ending of yet another black person’s life by intrinsically-racist white forces of law. For the other it represented the undemocratic rule of the mob, an impermissible unleashing of violence.

But I wonder whether such a bipolar axis of right and wrong, is the most appropriate, or helpful measure of the action that, in the end, brought Coulson’s statue to rest at the bottom of the river Severn? Is it right to keep the ethics of an act, that clearly points beyond itself to so much more, at a personal distance in this way?

1968-Mel-Calman-and-Graham-Bishop-623x1024Allow a very short digression. I remember one of my first ‘grown up’ science books I was J.E. Gordon’s classic ‘The New Science of Strong Materials’. It struck me with the sort of delicious shock that science is so good at. For as soon as we know the strength of the tiny bonds between atoms in a metal or compound, we can calculate the strength of a large piece, say a strut, made of those atoms by simply multiplying up the number of bonds. The shock comes in the actual  measured breaking strength –  it is always thousands of times smaller.

What did we forget? A material’s strength depends not on its ideal perfection, but on the presence of its hidden flaws, its misalignments, its pressure points – literally its weakest links. Cracks, when they occur,


Micrograph of a crack propagating from a fault in steel.

start there, and focus the external stress so that it shatters and divides. I don’t think that by now I‘ll  be needing to ask anyone to ‘keep up at the back’ with the metaphor. Fracture is sometimes the only way finding out where the flaws are. This is true of societies as well as materials. We can argue for ever about whether a destruction was a good or bad thing, but sometimes the most significant implication is what it shows us.

St. Luke in his gospel recounts a sudden material failure: a tower that fell on eighteen people, killing them. The people around Jesus wanted to know if blame should be laid on the shoulders of those who suffered. But Jesus refused to respond to that axis of judgement. Shockingly, he urged everyone to ‘repent’ – to turn around and change the way that they lived, loved and thought – rather than to judge: ‘for unless you also repent,’ he said, ‘you too will perish.’ We might take that to heart. Black lives have to matter to us, in a way that is reflected in deed and word. But characteristically, Jesus saw even deeper than that – for it also involves the identification of structural material flaws in us, those that, unless they are annealed away, can result in cracks that rend not only me and you,  but the communities in which we live.

Remarkably, this very material analogy is contained and continued in the Biblical tradition explicitly. To take one of many examples (the one that Handel and his librettist chose for Messiah):

refiningBut who can endure the day of his coming, and who can stand when he appears? For he is like a refiner’s fire and like fullers’ soap. He will sit as a refiner and purifier of silver, and he will purify the sons of Levi and refine them like gold and silver, and they will bring offerings in righteousness to the Lord.

Malachi 3:2-3 (ESV)

Removing the fault-lines that tear us apart is a necessary though painful aspect of a relationship with the Living One who is our Hope and Healer.

‘Following the Science’ – thoughts on Knowledge and Wisdom

rainbowWe hear a lot about ‘following the science’ in these pandemic-days. As someone who has ‘followed science’, and tried to practice it, for most of my life, this media soundbite intrigues me. But the biographical sense means something rather different. ‘Following science’, for scientists, is that lifelong, tantalizing glimmer around the corner that comes from insight, imagination and curiosity, a guide in the dark labyrinth of our present ignorance to the next step of understanding. Science itself doesn’t tell us which hunch to follow up next, but it will tell us when we emerge into the light. More prosaically, we will know when a vaccine works, but not in advance which candidate to choose.


Sir Francis Bacon

So ‘following science’ is not to make it our master. Francis Bacon, the 16thcentury philosopher once said that, ‘Money makes a good servant but a poor master’. As an influential promoter of early experimental scientific method, he might well have said the same about science. Knowledge on its own is a poor decision maker. We also need wisdom.

As well as a devoted follower of and participant in science, I confess to being an equal fan of wisdom. One of the reasons that I find the Judeo-Christian tradition of knowledge attractive is that it is paired, throughout the Bible, with the urge to gain wisdom as well, and never to deploy knowledge without it.

The place where this message is loudest of all must be in the Old Testament Book of Job, according to Berlin philosopher Susan Neimann, a book as important as Plato. As for so many of us at the present moment, the book’s protagonist, the righteous and upright Job,  cries out for a reason that he is suffering terrible illness and loss. The whole cosmic fabric seems to be falling apart around him and descending into chaos:

Yet as a mountain slips away and erodes … so you destroy human hope

Job rails at God.


The Lord Answering job out of the Whirlwind by William Blake

God’s answer, when it comes, is unexpected. For far from taking Job into some moral debating chamber, he is taken on (literally) a whirlwind tour of nature’s wild side: the ice and seas, the dawn light, star-clusters, lightning and the life cycle of wild animals. At the same time God declares Job to have been right, and others who interpreted his suffering as a punishment, to have been wrong.



This Wisdom is to learn to live alongside the necessary wildness of nature, rather than just to rail against it. But it goes hand in hand with our miraculous human ability to uncover the material structure of our world, to understand it, and to care for it. That’s using science wisely.

Faith and Wisdom in Coronavirus Science

Most readers of this blog will be experiencing times unlike any other in their lives. Those of our neighbours in the Northern England city of York who remember the Second World War confirm that, though trying, challenging and tragic in different ways, this isolation, this hidden enemy, these exponentially increasing numbers of dead and dying really are different. From 1939-1945, the medical workers, nurses, doctors were the support behind the front line. Now they are the front line.

But behind that front line of carers is another vital task-force – that of scientists: virologists, epidemiologists, protein biochemists, biophysicists and many more, whose gifts and experience have already, and are going to be, essential to the minimisation of suffering, and the combat against the SARS-CoV-2 virus itself. Here is a schematic picture of what the virus looks like – the diameter of its spherical form is one tenth of a micron, or one ten-millionth of a meter. If it were the size of a tennis ball, your hand would stretch 100km across. It is a thing of terrible beauty.


Schematic model of the SARS-CoV-2 Virus. On its surface are models of the proteins that ‘lock’ onto human cells. Through the ‘cutaway’ of the virus’ lipid bilayer can be seen representations of the RNA that it injects into host cells, which code for the production of new viruses.

The structure of the ‘spike proteins’ on its surface (these are the key to the virus’ binding and infecting human lung cells) was deduced very quickly, and published at the resolution of single atoms, by a group at the University of Texas at Austin in February this year. In a common representational scheme for proteins, the special folded shape of their polypeptide polymer looks like this:


Main protease protein with inhibitor N3 (white stick representation) covalently bound to residue cysteine 145 in the protease active site. Display shows secondary structure (helices in magenta, strands in cyan, loops in yellow). Adjacent active site residue histidine 41 is also shown. From Protein Data Bank.

That we know so much about this extraordinary object is itself a contemplative wonder. Of course the speed with which such rich information has been gathered on this new threat depends on decades, and more, of difficult research by thousands of people in many countries. The work goes on right now of course – just this past week I have been involved in helping coordinate a worldwide effort of theoretical biophysicists with wonderful computational tools that might be turned towards helping find drugs faster. People interested in these efforts can find information and links on the new UK Physics of Life Network page.

The history of our knowledge of the coronavirus class goes back to the 1960s, when David Tyrrell CBE at the UK’s Wiltshire Common Cold Research Unit, and coworkers, discovered viruses in common cold patients whose sensitivity to ether indicated that they possessed a lipid membrane (like those of ordinary cells) rather than the protein coats of many other viruses. Later they and others obtained electron microscope images of the spherical virus particles:


Coronavirus OC16.  from Proc Natl Acad Sci USA. 1967;57;933–940. The ‘crowns’ of spike proteins on the virus particles’ surfaces can be seen.

In his later life (he died in 2005) Tyrrell later worked on BSE and Chronic Fatigue Syndrome (CFS), as well as holding many positions of critical leadership in the UK medical world.  His biographers record a typical, but striking, reaction to his hearing confirmation of 16 proteins whose expression his own work had linked to CFS:

When David received news of the confirmation of these 16 genes by polymerase chain reaction technology, he said that he celebrated by mowing the lawn while singing ‘Praise, my soul, the King of Heaven’!

For it turns out that David Tyrrell was a lifelong and committed Christian. It sometimes surprises people that many scientists are also Christian believers, but that is always due to  misunderstandings of either Christianity, or science, or both, that Faith and Wisdom in Science was (in part) written to correct. For scientists like Tyrrell, or myself, science is a personal vocation, and not only that but a part of the great calling of humankind by the Creator to establish a responsible and wise relationship with the world in which we live. One cannot sustain a fruitful relationship without knowledge of the other partner, or without wisdom in how we use that knowledge. So with people, so with the world we live in.

Of course any religion that presents a God who, like a nanny in a giant nursery, acts to prevent all slips and hurts, keeps their charges from all danger by hemming them into a safe space with no freedom to explore, intervenes in every moment of threat, is immediately refuted by the very existence of pandemics such as the COVID-19 disease caused by the SARS-CoV-2 virus.

the-stone-is-rolled-awayFortunately the God that Christianity speaks of is nothing like that. What attracts scientists to Christianity, I think, is the way that its view of the world is gritty, practical, realistic in its assessment of the inherent selfishness of human beings, but as gloriously hopeful that they can rise through grace to be selfless, serving and hopeful. The great suffering character of the Old Testament, Job, is the one of whom God said that he was right to complain that his suffering was unfair and unjust. Yet Job was asked nonetheless to pray for the nations, and for the ‘friends’ who had spent so much time accusing him of wrongdoing, even while he was in the middle of grief and pain. Easter time reminds us that this God is also the Creator who did not turn his back from a suffering world, but entered it and served, healed and suffered here. Easter also reveals itself both as the affirmation that it is right to wish for an end to suffering and injustice, and also the source of hope that one day Creation will be renewed. That is the future to which the resurrection points, and about which St. Paul used the metaphor of ‘all creation groaning’ in his exposition of Christian hope to the early church in Rome (Letter to the Romans chapter 8).

It is fascinating that the Book of Job itself, the book that most deeply engages the issues of human indignation against the injustice of undeserved suffering, is also the book that speaks at such intensity of our questioning, curious, insatiable longing to know how the natural world works. The cycles of speeches between Job and his friends represent one of the richest texts of all ancient sources for discussion of the spontaneity, the chaos, the wildness of the world. Its animal examples are all untamed, its natural phenomena all unpredictable – lightning, flood, earthquake – and also disease. Yet the picture presented in the great poem of ‘the Lord’s Answer’ (chapters 38-42) is one in which the freedom of nature to explore its possibilities and potential is both necessary, and also confined by constraint. The flood has its channel, the lightning its path through the air. This is not an answer to the ‘problem of pain’, but it urges us to use the minds we have to explore the ways that order arises out of chaos, to make the world fruitful. For readers of Job, there should be no surprises that biological nature explores the freedom of its manifold forms through evolution – this is just the same leitmotif of whirling winds and waves from which come the order of landmasses and seas, played out at the genetic level, and presents us with the same calling, and challenge, to understand.

It is always the small, unseen yet myriad ways of serving that cause me joy when I see them happening in and from the church. –  like the way that mainstream churches have taken scientific advice on distancing seriously, and rapidly found ways of serving their communities under those constraints. Connecting people, bringing supplies to the housebound, helping people who suddenly find that they want to pray but don’t know how … and supporting the scientists, medical workers and others in their congregations.

New Directions for Science and Religion

There is no such thing as a conflict between science and religion, and this is an essay about it [1]. It is not, however, another rebuttal of the ‘conflict narrative’ – there is already an abundance of good recent writing in that vein from historians, sociologists and philosophers as well as scientists themselves. Readers still under the misapprehension that the history of science can be accurately characterised by a continuous struggle to escape from the shackles of religious oppression into a sunny secular upland of free thought (loudly expressed by a few scientists but no historians) can consult Peter Harrison’s masterly The Territories of Science and Religion (OUP 2015), 51OrZCbtwzL._SX333_BO1,204,203,200_or dip into Ron Numbers’ delightful edited volume Galileo Goes to Jail and Other Myths about Science and Religion (Harvard UP 2009).  Likewise, assumptions that theological and scientific methodologies and truth-claims are necessarily in philosophical or rational conflict might be challenged by Alister McGrath’s The Territories of Human Reason (McGrath 2019) or Andrew Torrance’s and Thomas McCall’s edited Knowing Creation (Torrence 2018). The late-Victorian origin of the ‘alternative history’ of unavoidable conflict is fascinating in its own right, but also damaging in that it has multiplied through so much public and educational discourse in the 20thcentury in both secular and religious communities. 51HdMVcRGgL._SX331_BO1,204,203,200_That is the topic of a new and fascinating study by historian James Ungureanu Science, Religion, and the Protestant Tradition: Retracing the Origins of Conflict (2019). Finally, the concomitant assumption that scientists must, by logical force, adopt non-theistic worldviews is roundly rebutted by recent and global social science, such as Elaine Eklund’s major survey, also published in a new book Secularity and Science (OUP 2019).

All well and good – so the history, philosophy and sociology of science and religion are richer and more interesting than the media-tales and high-school stories of opposition we were all brought up on. It seems a good time to ask the ‘so what?’ questions, however, especially since there has been less work in that direction. If Islamic, Jewish and Christian theologies were demonstrably central in the construction of our current scientific methodologies, for example, then what might such a reassessment imply for fruitful development of the role science plays in our modern world? In what ways might religious communities support science especially under the shadow of a ‘post-truth’ political order? What implications and resources might a rethink of science and religion offer for the anguished science-educational discussion on both sides of the Atlantic, and for the emerging international discussions on ‘science-literacy’?

I want to explore here directions in which we could take those consequential questions. Three perspectives will suggest lines of new resources for thinking: the critical tools offered by the discipline of theology itself (even in an entirely secular context), a reappraisal of ancient and pre-modern texts, and a new way of looking at the unanswered questions and predicament of some post-modern philosophy and sociology. I’ll finish by suggesting how these in turn suggest new configurations of religious communities in regard to science and technology.


Applied theologies – a critical teleology

The humble conjunction ‘and’ does much more work in framing discussions of ‘theology and science’ than at first apparent. It tacitly assumes that its referents belong to the same category (‘red’ and ‘blue’), implying a limited overlap between them (‘north’ and ‘south’), and it may already bias the discussion into oppositional mode (‘liberal’ and ‘conservative’). Yet both science and theology resist boundaries – each has something to say about everything. Other conjunctions are possible that do much greater justice to the history and philosophy of science, and also to the cultural narratives of theology. A strong candidate is, ‘of’, when the appropriate question now becomes, ‘What is a Theology of Science?’ and its complement, ‘What is a Science of Theology?’[2]

A ‘theology of …’ delivers a narrative of teleology, a story of purpose. A ‘theology of science’ will describe, within the religious narrative of one or more traditions, what the work of science is for. There have been examples of the ‘theology of…’ genre addressing, for example, music (Begbie 2000) and art (Wolterstorff 1997). Note that working through a teleology of a cultural art by calling on theological resources does not imply a personal commitment to that theology – it might simply respond to a need for academic thinking about purpose. Begbie explores the role music plays in accommodating human experience to time, for example, while Wolterstorff discovers a responsibility toward the visual aesthetics of public spaces.  In both cases we find that theology has retained a set of critical tools that address the essential human experience of purpose, value and ethics in regard to a capacity or endeavour. Intriguingly, it appears that some of the social frustrations that science now experiences result from missing, inadequate or even damaging cultural narratives ofscience. Absence of a narrative that delineates what science is for leave it open to hijacking by personal or corporate sectarian interests alone, such as the purely economic framings of much government policy. It also muddies educational waters, resulting in an over-instrumental approach to science formation.  I have elsewhere attempted to tease out a longer version how a long argument for what a ‘theology of science’ might look like (McLeish 2014), but even a summary must begin with examples of the fresh (though ancient) sources a late modern theological project of this kind requires.


New thinking from old – ancient, medieval and early modern sources

The cue for a first wellspring of raw material comes from neo-Kantian Berlin philosopher Susan Neiman. In a remarkable essay (Neimann 2016) she urges that Western philosophy acknowledge, for a number of reasons, a second foundational source alongside Plato – that of the Biblical Book of Job. The ancient Semitic text offers a matchless starting point for a narratology of the human relationship of the mind, and the experience of human suffering, with the material world. Long recognised as a masterpiece of ancient literature, Job has attracted and perplexed scholars in equal measures for centuries, and is still a vibrant field of study. David Clines, a leading and lifelong scholar of the text, calls Job‘the most intense book theologically and intellectually of the Old Testament’ (Clines 2014). Inspiring commentators across vistas of centuries and philosophies, from Basil the Great to Emmanuel Levinas, its relevance to a theology of science is immediately apparent from poetic ‘Lord’s Answer’ to Job’s complains late in the book (ch38v4[3]):


The Lord Answering job out of the Whirlwind by William Blake

Where were you when I founded the earth?

Tell me, if you have insight.

Who fixed its dimensions? Surely you know!

Have you entered the storehouses of the snow?

Or have you seen the arsenals of the hail?


The writer develops material from the core creation narrative in Hebrew wisdom poetry – as found in Psalms, Proverbs and Prophets – that speaks of creation through ‘ordering’, ‘bounding’ and ‘setting foundations’ (Brown 2010). The questing survey next sweeps over the animal kingdom, then finishes with a celebrated ‘de-centralising’ text that places humans at the periphery of the world, looking on in wonder and terror at the ‘other’ – the great beasts Behemoth and Leviathan. The text is an ancient recognition of the unpredictable aspects of the world: the whirlwind, the earthquake, the flood, unknown great beasts. In today’s terms, we have in the Lord’s Answer to Job a foundational framing for the primary questions of the fields we now call cosmology, geology, meteorology, astronomy, zoology, … We recognise an ancient and questioning view into nature unsurpassed in its astute attention to detail and sensibility towards the tensions of humanity in confrontation with materiality. The call to a questioning relationship of the mind from this ancient and enigmatic source feeds questions of purpose in the human engagement with nature from a cultural depth that a restriction to contemporary discourse does not touch.

Drawing on historical sources is helpful in another way. The philosophy of every age contains its tacit assumptions, taken as evident so not critically examined. A project on the human purpose for science that draws on theological thinking might, in this light, draw on writing from periods when this was an academically-developed topic, such as the scientific renaissances of the 13thand 17thcenturies. Both saw considerable scientific progress (such as the development of geometric optics to the level of the final solution to the problem of the rainbow in the first, and the establishment of heliocentricity in the second). Furthermore, both periods, while perfectly distinguishing ‘natural philosophy’ from theology, worked in an intellectual atmosphere that encouraged a fluidity of thought between them.

An instructive and insightful thinker from the first is polymath Robert Grosseteste. Master to the Oxford Franciscans in the 1220s, and Bishop of Lincoln from 1235 to his death in 1253, Grosseteste wrote in highly mathematical ways about light, colour, sound and the heavens. He drew on the earlier Arab transmission of and commentaries on Aristotle, yet developed many topics well beyond the legacy of the ancient philosopher (he was the first, for example, to identify the phenomenon of refraction to be responsible for rainbows). He also brought a developed Christian philosophy to bear upon the reawakening of natural philosophy in Europe, whose programmes of astronomy, mechanics and above all optics would lead to early modern science (Cunningham and Hocknull 2016).


Manuscript illustration of Robert Grosseteste

In his Commentary on the Posterior Analytics (Aristotle’s most detailed exposition of his scientific method) Grosseteste places a sophisticated theological philosophy of science within an overarching Christian narrative of Creation, Fall and Redemption. Employing an ancient metaphor for the effect of the Fall on the higher intellectual powers as a ‘lulling to sleep’, he maintains that the lower faculties, including critically the senses, are less affected by fallen human nature than the higher. So, re-illumination must start there:

Since sense perception, the weakest of all human powers, apprehending only corruptible individual things, survives, imagination stands, memory stands, and finally understanding, which is the noblest of human powers capable of apprehending the incorruptible, universal, first essences, stands![4]

Human re-engagement with the external world through the senses, recovering a potential knowledge of it, becomes a participation in the theological project of healing. Furthermore, the reason that this is possible is because this relationship with the created world is also the nexus at which human seeking is met by divine illumination.


Theological Imagination at Work: the Experimental Method

 The old idea that there is something incomplete, damaged or ‘out of joint’ in the human relationship with materiality (itself drawing on traditions such as Job), and that the human ability to engage a question-based and rational investigation of the physical world constitutes a step towards a reversal of it, represents a strand of continuity between medieval and early modern thinking. Francis Bacon’s theologically-motivated framing of the new ‘experimental philosophy’ in the 17thcentury takes (though not explicitly) Grosseteste’s framing as its starting point. As framed in his Novum Organum (Bacon 1887 edn.), the Biblical and medieval tradition that sense data are more reliable than those from reason or imagination) constitutes his foundation for ‘experimental method’. The rise of experimentation in science as we now know it, is itself a counter-intuitive turn, in spite the hindsight-fuelled criticism of ancient, renaissance and medieval natural philosophers for their failure to adopt it. Yet the notion that one could learn anything general about the workings of nature by acts as specific and as artificial as those constituting an experiment was not at all evident, even after the foundation of the Royal Society. The 17thcentury philosopher Margaret Cavendish was among the clearest of critics (Cavendish 1668):

For as much as a natural man differs from an artificial statue or picture of a man, so much differs a natural effect from an artificial, …

Paradoxically perhaps, it was the theologically-informed imagination of the medieval and early modern teleology of science that motivated the counter-intuitive step that won against Cavendish’s critique.


Philosophy and Sociology of Post-modern Difference – the need for reconciliation

Much of ‘post-modern’ philosophical thinking and its antecedents through the 20thcentury appear at best to have no contact with science at all, and at worst to strike at the very root-assumptions on which natural science is built, such as the existence of a real world, and the human ability to speak representationally of it. The occasional explicit skirmishes in the 1990s’ ‘Science Wars’ between philosophers and scientists (such as the ‘Sokal-affair’ and the subsequent public acrimony between physicist Alan Sokal and philosopher Jacques Derrida) have suggested an irreconcilable conflict (Parsons 2003). A superficial evaluation might conclude that the charges of ‘intellectual imposture’ and ‘uncritical naivety’ levied from either side are simply the millennial manifestation of the earlier ‘Two Cultures’ conflict of F.R. Leavis and C. P. Snow (Snow 1959), between the late-modern divided intellectual world of the sciences and the humanities.  Yet in the light of the long and theologically-informed perspective on the story of we have sketched, the relationship of science to the major post-modern philosophical themes looks rather different.

Kierkegaard and Camus wrote of the ‘absurd’ – a gulf between human quest for meaning and its absence in the world, Levinas and Sartre of the ‘nausea’ that arises from a human confrontation with sheer, basic existence. Derrida and Saussure framed the human predicament of desire to represent the unrepresentable as différance. Arendt introduces The Human Condition with a meditation on the iconic value of human spaceflight, and concludes that the history of modernism has been a turning away from the world that has increased its inhospitality, so that we are suffering from ‘world alienation’ (Arendt 1998). The first modern articulation of what these thinkers have in common, an irreconcilable aspect of the human condition in respect of the world, comes from Kant’s third critique (Kant 1952):

Between the realm of the natural concept, as the sensible, and the realm of the concept of freedom, as the supersensible, there is a great gulf fixed, so that it is not possible to pass from the former to the latter by means of the theoretical employment of reason.

Kant’s recognition that more than reason alone is required for human re-engagement with the world is echoed by George Steiner. In his short but plangent lament over late-modern literary disengagement with reference and meaning Real Presences (Steiner 1989) looks from predicament to possible solution:

Only art can go some way towards making accessible, towards waking into some measure of communicability, the sheer inhuman otherness of matter

Steiner’s relational language is full of religious resonance –  for re-ligio is simply at source the re-connection of the broken. Yet, once we are prepared to situate science within the same relationship to the humanities as enjoyed by the arts, then it also fits rather snugly into a framing of ‘making accessible the sheer inhuman otherness of matter’. What else, on reflection, does science do?

Although both theology and philosophy suffer frequent accusations of irrelevance, on this point of brokenness and confusion in the relationship of humans to the world, current public debate on crucial science and technology indicate that both strands of thought are on the mark. Climate change, vaccination, artificial intelligence – these and other topics are marked in the quality of public and political discourse by anything but enlightenment values. Philsopher Jean-Pierre Depuy (2010), commenting on a Europe-wide project using narrative analysis of public debates around nanotechnology (Davies 2009), shows that they rather draw on both ancient and modern ‘narratives of despair’, creating an undertow to discussion of ‘troubled technologies’ that, if unrecognised, renders effective public consultation impossible. The research team labelled the narratives:

(1) Be careful what you wish for – the narrative of Desire,

(2) Pandora’s Box – the narrative of Evil and Hope,

(3) Messing with Nature – the narrative of the Sacred,

(4) Kept in the Dark – the narrative of Alienation,

(5) The rich get richer and the poor get poorer – the narrative of Exploitation.

These dark and alienated stories turn up again and again below the surface of public framings of science, yet driving opinion and policy. The continuously complex case of genetically modified organisms is another example (McLeish 2015). None of these underlying and framing stories draws on the theological resources within the history of science itself, but all do illustrate the absurd, the alienation and the irreconcilable of post-modern thinking.

Small wonder, perhaps, that Bruno Latour (Latour 2008) writing on environmentalism, revisits the narrative of Pandora’s Box, showing that the modernist hope of controlling nature through technology is dashed on the rocks of the same increasingly deep and problematic entangling with the world that prevents our withdrawal from it. But Latour then makes a surprising move: he calls for a re-examination of the connection between mastery, technology and theologyas a route out of the environmental impasse.


Practicalities and Practice

What forms would an answer to Latour’s call take? One is simply the strong yet gentle repeating of truth to power that a confessional voice for science, and evidence-based thinking, can have when it is resting on deep foundations of a theology that understands science as gift rather than threat. One reason that Katherine Hayhoe, the Texan climate scientist, deploys such a powerful advocacy in the United States for taking climate change seriously, is that she is able to work explicitly through a theological argument for environment care with those who resonate with that, but whose ideological commitments are impervious to secular voices.

There are more grassroots-level examples that demonstrate how religious communities can support a healthy lay engagement with science. Local movements can dissolve some of the alienation and fear that characterises science for many people. A group of local churches in Leeds, UK, recently decided to hold a community science festival that encouraged people to share their own, and their families’ stories, together with the objects that went with them (from an ancient telescope to a circuit board from an early colour TV set constructed by a resident’s grandfather). A diverse movement under the general title of ‘scientists in congregations’ in both the US and the UK has discovered a natural empathy for science as a creative gift, rather than a threat to belief, within local churches (see examples). At national level the last five years has seen a remarkable project engaging senior church leaders in the UK with current scientific issues and their research leaders. In a country with an established church it is essential that its voices in the national political process are scientifically informed and connected. Workshop participants, including scientists with no religious background or practice, have found the combination of science, theology and community leadership represented in their mix to be uniquely powerful in resourcing discussions of ethical ways forward, in issues from fracking to artificial intelligence.

A relational narrative for science that speaks to the need to reconcile the human with the material, and that draws on ancient Wisdom, contributes to the construction of new pathways to a healthier public discourse, and an educational interdisciplinary project that is faithful to the story of human engagement with the apparently chaotic, inhuman materiality of nature, yet one whose future must be negotiated alongside our own. Without new thinking on ‘science and religion’ we risk forfeiting an essential source for wisdom today.

This essay was first published on the Aeon public philosophy website


Arendt, Hannah (1958) The Human Condition, Chicago: University of Chicago Press, 314

Bacon, Francis (1887) Works, edited by J. Spedding, R. L. Ellis, and D. D. Heath. Volume III

Brown, W. H, (2010) The Seven Pillars of Creation, Oxford: OUP

Begbie, Jeremy (2000) Theology, Music and Time, Cambridge: Cambridge University Press

Cavendish, Margaret (1668) Observations upon Experimental Philosophy(Cambridge Texts in the History of Philosophy) (E. O’Neill, Ed.) (2001). Cambridge: Cambridge University Press.

Clines, David (2014) World Bible Commentaries: Job Thomas Nelson pubs., Nelson, Vol. 3.

Cunningham, Jack & Mark Hocknull Eds. (2016), ‘Grosseteste and the pursuit of Religious and Scientific Learning in the Middle Ages’, New York: Springer

Davies, Sarah, Phil Macnaghten and Matthew Kearnes (eds.) (2009), Reconfiguring Responsibility: Deepening Debate on Nanotechnology, Durham University, chapter 12

Dupuy, Jean-Pierre, (2010) The Narratology of Lay Ethics, Nanoethics 4153-170

Harrison, Peter (2015) The Territories of Science and Religion, University of Chicago Press

Kant, Immanuel (1952) [1790], Critique of Judgement, trans. J. C. Meredith. Oxford: Oxford University Press, p. 11

Latour, Bruno (2008)“It’s development, stupid !” or: How to Modernize Modernization, in Postenvironmentalism. Jim Procter ed.,MIT Press

McGrath, Alister (2019) The Territories of Human Reason.Oxford: OUP

McLeish, Tom (2014) Faith and Wisdom in Science.Oxford: OUP

McLeish, T.C.B. (2015). ‘The search for affirming narratives for the future governance of technology: reflections from a science-theology perspective on GMFuturos’, in Governing Agricultural Sustainability, Eds. P. Macnaghten and S. Carro-Ripalda Routledge, Oxon

Neimann, Susan (2016),The Rationality of the World: A Philosophical Reading of the Book of Job, ABC net, https://www.abc.net.au/religion/philosophical-reading-of-the-book-of-job/11054038

Numbers, R. L. (Ed.) (2009) Galileo Goes to Jail and Other Myths about Science and ReligionCambridge: Harvard University Press

Parsons, Keith (ed.) (2003). The Science Wars: Debating Scientific Knowledge and Technology, Prometheus Books, Amherst, NY USA

Southern, R.W.  (1992) Robert Grosseteste; the growth of an English mind in medieval Europe, Oxford: Clarendon Press

Torrance, A. B. and McCall, T.H., Knowing Creation, Grand Rapids: Zondervan (2018)

Snow, C. P. (1959 [1998]) The Two Cultures, Cambridge: Cambridge University Press

Steiner, George (1989) Real Presences, London: Faber and Faber

Ungureanu, James (2019), Science, Religion, and the Protestant Tradition: Retracing the Origins of Conflict (Pittsburg UP, 2019)

Wolterstorff, Nicholas (1997) Art in Action; Toward a Christian Aesthetic, Grand Rapids, Michigan: Wm, B. Eerdmans



[1]With gratitude to Stephen Shapin for inventing this important genre of opening lines.

[2]We will not be considering the second of these in the current chapter, but it encompasses the anthropology and neuroscience of religion, for two examples

[3]We take quotations of the text from the new translation and commentary by Clines (2014)

[4]Robert Grosseteste Commentary on the Posterior Analytics, quoted in R.W. Southern (1992) Robert Grosseteste; the growth of an English mind in medieval Europe, Oxford: Clarendon Press p167